All Publications

Icon for Elsevier Science Icon for PubMed Central Related Articles

Functional attributes of the Saccharomyces cerevisiae meiotic recombinase Dmc1.

DNA Repair (Amst). 2013 Sep;12(9):707-12

Authors: Busygina V, Gaines WA, Xu Y, Kwon Y, Williams GJ, Lin SW, Chang HY, Chi P, Wang HW, Sung P

Abstract
The role of Dmc1 as a meiosis-specific general recombinase was first demonstrated in Saccharomyces cerevisiae. Progress in understanding the biochemical mechanism of ScDmc1 has been hampered by its tendency to form inactive aggregates. We have found that the inclusion of ATP during protein purification prevents Dmc1 aggregation. ScDmc1 so prepared is capable of forming D-loops and responsive to its accessory factors Rad54 and Rdh54. Negative staining electron microscopy and iterative helical real-space reconstruction revealed that the ScDmc1-ssDNA nucleoprotein filament harbors 6.5 protomers per turn with a pitch of ∼106Å. The ScDmc1 purification procedure and companion molecular analyses should facilitate future studies on this recombinase.

PMID: 23769192 [PubMed – indexed for MEDLINE]


Icon for HighWire Icon for PubMed Central Related Articles

FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress.

J Cell Biol. 2013 Jan 21;200(2):141-9

Authors: Jeong YT, Rossi M, Cermak L, Saraf A, Florens L, Washburn MP, Sung P, Schildkraut CL, Schildkraut C, Pagano M

Abstract
Proper resolution of stalled replication forks is essential for genome stability. Purification of FBH1, a UvrD DNA helicase, identified a physical interaction with replication protein A (RPA), the major cellular single-stranded DNA (ssDNA)-binding protein complex. Compared with control cells, FBH1-depleted cells responded to replication stress with considerably fewer double-strand breaks (DSBs), a dramatic reduction in the activation of ATM and DNA-PK and phosphorylation of RPA2 and p53, and a significantly increased rate of survival. A minor decrease in ssDNA levels was also observed. All these phenotypes were rescued by wild-type FBH1, but not a FBH1 mutant lacking helicase activity. FBH1 depletion had no effect on other forms of genotoxic stress in which DSBs form by means that do not require ssDNA intermediates. In response to catastrophic genotoxic stress, apoptosis prevents the persistence and propagation of DNA lesions. Our findings show that FBH1 helicase activity is required for the efficient induction of DSBs and apoptosis specifically in response to DNA replication stress.

PMID: 23319600 [PubMed – indexed for MEDLINE]


Icon for HighWire Icon for PubMed Central Related Articles

Fanconi anemia protein FANCI functions in ribosome biogenesis.

Proc Natl Acad Sci U S A. 2019 02 12;116(7):2561-2570

Authors: Sondalle SB, Longerich S, Ogawa LM, Sung P, Baserga SJ

Abstract
Fanconi anemia (FA) is a disease of DNA repair characterized by bone marrow failure and a reduced ability to remove DNA interstrand cross-links. Here, we provide evidence that the FA protein FANCI also functions in ribosome biogenesis, the process of making ribosomes that initiates in the nucleolus. We show that FANCI localizes to the nucleolus and is functionally and physically tied to the transcription of pre-ribosomal RNA (pre-rRNA) and to large ribosomal subunit (LSU) pre-rRNA processing independent of FANCD2. While FANCI is known to be monoubiquitinated when activated for DNA repair, we find that it is predominantly in the deubiquitinated state in the nucleolus, requiring the nucleoplasmic deubiquitinase (DUB) USP1 and the nucleolar DUB USP36. Our model suggests a possible dual pathophysiology for FA that includes defects in DNA repair and in ribosome biogenesis.

PMID: 30692263 [PubMed – indexed for MEDLINE]


Icon for Silverchair Information Systems Icon for PubMed Central Related Articles

Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection.

Nucleic Acids Res. 2016 Apr 07;44(6):2742-53

Authors: Chen X, Niu H, Yu Y, Wang J, Zhu S, Zhou J, Papusha A, Cui D, Pan X, Kwon Y, Sung P, Ira G

Abstract
DNA double-strand breaks (DSBs) are one of the most cytotoxic types of DNA lesion challenging genome integrity. The activity of cyclin-dependent kinase Cdk1 is essential for DSB repair by homologous recombination and for DNA damage signaling. Here we identify the Fun30 chromatin remodeler as a new target of Cdk1. Fun30 is phosphorylated by Cdk1 on Serine 28 to stimulate its functions in DNA damage response including resection of DSB ends. Importantly, Cdk1-dependent phosphorylation of Fun30-S28 increases upon DNA damage and requires the recruitment of Fun30 to DSBs, suggesting that phosphorylation increases in situ at the DNA damage. Consistently, we find that Cdk1 and multiple cyclins become highly enriched at DSBs and that the recruitment of Cdk1 and cyclins Clb2 and Clb5 ensures optimal Fun30 phosphorylation and checkpoint activation. We propose that the enrichment of Cdk1-cyclin complexes at DSBs serves as a mechanism for enhanced targeting and modulating of the activity of DNA damage response proteins.

PMID: 26801641 [PubMed – indexed for MEDLINE]


Icon for Elsevier Science Icon for PubMed Central Related Articles

Enhancement of BLM-DNA2-Mediated Long-Range DNA End Resection by CtIP.

Cell Rep. 2017 Oct 10;21(2):324-332

Authors: Daley JM, Jimenez-Sainz J, Wang W, Miller AS, Xue X, Nguyen KA, Jensen RB, Sung P

Abstract
DNA double-strand break repair by homologous recombination entails the resection of DNA ends to reveal ssDNA tails, which are used to invade a homologous DNA template. CtIP and its yeast ortholog Sae2 regulate the nuclease activity of MRE11 in the initial stage of resection. Deletion of CtIP in the mouse or SAE2 in yeast engenders a more severe phenotype than MRE11 nuclease inactivation, indicative of a broader role of CtIP/Sae2. Here, we provide biochemical evidence that CtIP promotes long-range resection via the BLM-DNA2 pathway. Specifically, CtIP interacts with BLM and enhances its helicase activity, and it enhances DNA cleavage by DNA2. Thus, CtIP influences multiple aspects of end resection beyond MRE11 regulation.

PMID: 29020620 [PubMed – indexed for MEDLINE]


Icon for HighWire Related Articles

Dynamic interactions of the homologous pairing 2 (Hop2)-meiotic nuclear divisions 1 (Mnd1) protein complex with meiotic presynaptic filaments in budding yeast.

J Biol Chem. 2019 01 11;294(2):490-501

Authors: Crickard JB, Kwon Y, Sung P, Greene EC

Abstract
Homologous recombination (HR) is a universally conserved DNA repair pathway that can result in the exchange of genetic material. In eukaryotes, HR has evolved into an essential step in meiosis. During meiosis many eukaryotes utilize a two-recombinase pathway. This system consists of Rad51 and the meiosis-specific recombinase Dmc1. Both recombinases have distinct activities during meiotic HR, despite being highly similar in sequence and having closely related biochemical activities, raising the question of how these two proteins can perform separate functions. A likely explanation for their differential regulation involves the meiosis-specific recombination proteins Hop2 and Mnd1, which are part of a highly conserved eukaryotic protein complex that participates in HR, albeit through poorly understood mechanisms. To better understand how Hop2-Mnd1 functions during HR, here we used DNA curtains in conjunction with single-molecule imaging to measure and quantify the binding of the Hop2-Mnd1 complex from Saccharomyces cerevisiae to recombination intermediates comprising Rad51- and Dmc1-ssDNA in real time. We found that yeast Hop2-Mnd1 bound rapidly to Dmc1-ssDNA filaments with high affinity and remained bound for ∼1.3 min before dissociating. We also observed that this binding interaction was highly specific for Dmc1 and found no evidence for an association of Hop2-Mnd1 with Rad51-ssDNA or RPA-ssDNA. Our findings provide new quantitative insights into the binding dynamics of Hop2-Mnd1 with the meiotic presynaptic complex. On the basis of these findings, we propose a model in which recombinase specificities for meiotic accessory proteins enhance separation of the recombinases’ functions during meiotic HR.

PMID: 30420424 [PubMed – indexed for MEDLINE]


Icon for Elsevier Science Icon for Elsevier Science Icon for PubMed Central Related Articles

Dual and Opposite Effects of hRAD51 Chemical Modulation on HIV-1 Integration.

Chem Biol. 2015 Jun 18;22(6):712-23

Authors: Thierry S, Benleulmi MS, Sinzelle L, Thierry E, Calmels C, Chaignepain S, Waffo-Teguo P, Merillon JM, Budke B, Pasquet JM, Litvak S, Ciuffi A, Sung P, Connell P, Hauber I, Hauber J, Andreola ML, Delelis O, Parissi V

Abstract
The cellular DNA repair hRAD51 protein has been shown to restrict HIV-1 integration both in vitro and in vivo. To investigate its regulatory functions, we performed a pharmacological analysis of the retroviral integration modulation by hRAD51. We found that, in vitro, chemical activation of hRAD51 stimulates its integration inhibitory properties, whereas inhibition of hRAD51 decreases the integration restriction, indicating that the modulation of HIV-1 integration depends on the hRAD51 recombinase activity. Cellular analyses demonstrated that cells exhibiting high hRAD51 levels prior to de novo infection are more resistant to integration. On the other hand, when hRAD51 was activated during integration, cells were more permissive. Altogether, these data establish the functional link between hRAD51 activity and HIV-1 integration. Our results highlight the multiple and opposite effects of the recombinase during integration and provide new insights into the cellular regulation of HIV-1 replication.

PMID: 26051216 [PubMed – indexed for MEDLINE]


Icon for Public Library of Science Icon for PubMed Central Related Articles

Down-regulation of Rad51 activity during meiosis in yeast prevents competition with Dmc1 for repair of double-strand breaks.

PLoS Genet. 2014 Jan;10(1):e1004005

Authors: Liu Y, Gaines WA, Callender T, Busygina V, Oke A, Sung P, Fung JC, Hollingsworth NM

Abstract
Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that exhibits a preference for repairing double strand breaks (DSBs) using sister chromatids, in contrast to the conserved, meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1Δ mutants, where the failure to repair meiotic DSBs triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A, makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors. Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs.

PMID: 24465215 [PubMed – indexed for MEDLINE]


Icon for Elsevier Science Icon for Elsevier Science Icon for PubMed Central Related Articles

DNA sequence alignment by microhomology sampling during homologous recombination.

Cell. 2015 Feb 26;160(5):856-869

Authors: Qi Z, Redding S, Lee JY, Gibb B, Kwon Y, Niu H, Gaines WA, Sung P, Greene EC

Abstract
Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair single-strand DNA (ssDNA) with a homologous double-strand DNA (dsDNA) template. Here, we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a ninth nucleotide coincides with an additional reduction in binding free energy, and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination.

PMID: 25684365 [PubMed – indexed for MEDLINE]


Icon for Nature Publishing Group Icon for PubMed Central Related Articles

DNA requirement in FANCD2 deubiquitination by USP1-UAF1-RAD51AP1 in the Fanconi anemia DNA damage response.

Nat Commun. 2019 06 28;10(1):2849

Authors: Liang F, Miller AS, Longerich S, Tang C, Maranon D, Williamson EA, Hromas R, Wiese C, Kupfer GM, Sung P

Abstract
Fanconi anemia (FA) is a multigenic disease of bone marrow failure and cancer susceptibility stemming from a failure to remove DNA crosslinks and other chromosomal lesions. Within the FA DNA damage response pathway, DNA-dependent monoubiquitinaton of FANCD2 licenses downstream events, while timely FANCD2 deubiquitination serves to extinguish the response. Here, we show with reconstituted biochemical systems, which we developed, that efficient FANCD2 deubiquitination by the USP1-UAF1 complex is dependent on DNA and DNA binding by UAF1. Surprisingly, we find that the DNA binding activity of the UAF1-associated protein RAD51AP1 can substitute for that of UAF1 in FANCD2 deubiquitination in our biochemical system. We also reveal the importance of DNA binding by UAF1 and RAD51AP1 in FANCD2 deubiquitination in the cellular setting. Our results provide insights into a key step in the FA pathway and help define the multifaceted role of the USP1-UAF1-RAD51AP1 complex in DNA damage tolerance and genome repair.

PMID: 31253762 [PubMed – indexed for MEDLINE]


Filter results

Secured By miniOrange