All Publications

Icon for Elsevier Science Related Articles

C1QBP Promotes Homologous Recombination by Stabilizing MRE11 and Controlling the Assembly and Activation of MRE11/RAD50/NBS1 Complex.

Mol Cell. 2019 Jul 09;:

Authors: Bai Y, Wang W, Li S, Zhan J, Li H, Zhao M, Zhou XA, Li S, Li X, Huo Y, Shen Q, Zhou M, Zhang H, Luo J, Sung P, Zhu WG, Xu X, Wang J

Abstract
MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.

PMID: 31353207 [PubMed – as supplied by publisher]


Icon for Elsevier Science Icon for PubMed Central Related Articles

Breast cancer proteins PALB2 and BRCA2 stimulate polymerase η in recombination-associated DNA synthesis at blocked replication forks.

Cell Rep. 2014 Feb 13;6(3):553-64

Authors: Buisson R, Niraj J, Pauty J, Maity R, Zhao W, Coulombe Y, Sung P, Masson JY

Abstract
One envisioned function of homologous recombination (HR) is to find a template for DNA synthesis from the resected 3′-OH molecules that occur during double-strand break (DSB) repair at collapsed replication forks. However, the interplay between DNA synthesis and HR remains poorly understood in higher eukaryotic cells. Here, we reveal functions for the breast cancer proteins BRCA2 and PALB2 at blocked replication forks and show a role for these proteins in stimulating polymerase η (Polη) to initiate DNA synthesis. PALB2, BRCA2, and Polη colocalize at stalled or collapsed replication forks after hydroxyurea treatment. Moreover, PALB2 and BRCA2 interact with Polη and are required to sustain the recruitment of Polη at blocked replication forks. PALB2 and BRCA2 stimulate Polη-dependent DNA synthesis on D loop substrates. We conclude that PALB2 and BRCA2, in addition to their functions in D loop formation, play crucial roles in the initiation of recombination-associated DNA synthesis by Polη-mediated DNA repair.

PMID: 24485656 [PubMed – indexed for MEDLINE]


Icon for Nature Publishing Group Icon for PubMed Central Related Articles

BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing.

Nature. 2017 10 19;550(7676):360-365

Authors: Zhao W, Steinfeld JB, Liang F, Chen X, Maranon DG, Jian Ma C, Kwon Y, Rao T, Wang W, Sheng C, Song X, Deng Y, Jimenez-Sainz J, Lu L, Jensen RB, Xiong Y, Kupfer GM, Wiese C, Greene EC, Sung P

Abstract
The tumour suppressor complex BRCA1-BARD1 functions in the repair of DNA double-stranded breaks by homologous recombination. During this process, BRCA1-BARD1 facilitates the nucleolytic resection of DNA ends to generate a single-stranded template for the recruitment of another tumour suppressor complex, BRCA2-PALB2, and the recombinase RAD51. Here, by examining purified wild-type and mutant BRCA1-BARD1, we show that both BRCA1 and BARD1 bind DNA and interact with RAD51, and that BRCA1-BARD1 enhances the recombinase activity of RAD51. Mechanistically, BRCA1-BARD1 promotes the assembly of the synaptic complex, an essential intermediate in RAD51-mediated DNA joint formation. We provide evidence that BRCA1 and BARD1 are indispensable for RAD51 stimulation. Notably, BRCA1-BARD1 mutants with weakened RAD51 interactions show compromised DNA joint formation and impaired mediation of homologous recombination and DNA repair in cells. Our results identify a late role of BRCA1-BARD1 in homologous recombination, an attribute of the tumour suppressor complex that could be targeted in cancer therapy.

PMID: 28976962 [PubMed – indexed for MEDLINE]


Icon for Elsevier Science Icon for PubMed Central Related Articles

Biochemical mechanism of DSB end resection and its regulation.

DNA Repair (Amst). 2015 Aug;32:66-74

Authors: Daley JM, Niu H, Miller AS, Sung P

Abstract
DNA double-strand breaks (DSBs) in cells can undergo nucleolytic degradation to generate long 3′ single-stranded DNA tails. This process is termed DNA end resection, and its occurrence effectively commits to break repair via homologous recombination, which entails the acquisition of genetic information from an intact, homologous donor DNA sequence. Recent advances, prompted by the identification of the nucleases that catalyze resection, have revealed intricate layers of functional redundancy, interconnectedness, and regulation. Here, we review the current state of the field with an emphasis on the major questions that remain to be answered. Topics addressed will include how resection initiates via the introduction of an endonucleolytic incision close to the break end, the molecular mechanism of the conserved MRE11 complex in conjunction with Sae2/CtIP within such a model, the role of BRCA1 and 53BP1 in regulating resection initiation in mammalian cells, the influence of chromatin in the resection process, and potential roles of novel factors.

PMID: 25956866 [PubMed – indexed for MEDLINE]


Icon for Elsevier Science Icon for PubMed Central Related Articles

Binding of FANCI-FANCD2 Complex to RNA and R-Loops Stimulates Robust FANCD2 Monoubiquitination.

Cell Rep. 2019 Jan 15;26(3):564-572.e5

Authors: Liang Z, Liang F, Teng Y, Chen X, Liu J, Longerich S, Rao T, Green AM, Collins NB, Xiong Y, Lan L, Sung P, Kupfer GM

Abstract
Fanconi anemia (FA) is characterized by developmental abnormalities, bone marrow failure, and cancer predisposition. FA cells are hypersensitive to DNA replicative stress and accumulate co-transcriptional R-loops. Here, we use the Damage At RNA Transcription assay to reveal colocalization of FANCD2 with R-loops in a highly transcribed genomic locus upon DNA damage. We further demonstrate that highly purified human FANCI-FANCD2 (ID2) complex binds synthetic single-stranded RNA (ssRNA) and R-loop substrates with high affinity, preferring guanine-rich sequences. Importantly, we elucidate that human ID2 binds an R-loop structure via recognition of the displaced ssDNA and ssRNA but not the RNA:DNA hybrids. Finally, a series of RNA and R-loop substrates are found to strongly stimulate ID2 monoubiquitination, with activity corresponding to their binding affinity. In summary, our results support a mechanism whereby the ID2 complex suppresses the formation of pathogenic R-loops by binding ssRNA and ssDNA species, thereby activating the FA pathway.

PMID: 30650351 [PubMed – in process]


Icon for Nature Publishing Group Icon for PubMed Central Related Articles

Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms.

Nature. 2014 Jul 10;511(7508):251-4

Authors: Potenski CJ, Niu H, Sung P, Klein HL

Abstract
Srs2 helicase is known to dismantle nucleofilaments of Rad51 recombinase to prevent spurious recombination events and unwind trinucleotide sequences that are prone to hairpin formation. Here we document a new, unexpected genome maintenance role of Srs2 in the suppression of mutations arising from mis-insertion of ribonucleoside monophosphates during DNA replication. In cells lacking RNase H2, Srs2 unwinds DNA from the 5′ side of a nick generated by DNA topoisomerase I at a ribonucleoside monophosphate residue. In addition, Srs2 interacts with and enhances the activity of the nuclease Exo1, to generate a DNA gap in preparation for repair. Srs2-Exo1 thus functions in a new pathway of nick processing-gap filling that mediates tolerance of ribonucleoside monophosphates in the genome. Our results have implications for understanding the basis of Aicardi-Goutières syndrome, which stems from inactivation of the human RNase H2 complex.

PMID: 24896181 [PubMed – indexed for MEDLINE]


Icon for HighWire Icon for PubMed Central Related Articles

A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization.

J Biol Chem. 2012 Jul 06;287(28):23808-18

Authors: Islam MN, Paquet N, Fox D, Dray E, Zheng XF, Klein H, Sung P, Wang W

Abstract
The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.

PMID: 22645136 [PubMed – indexed for MEDLINE]


Icon for HighWire Icon for PubMed Central Related Articles

A novel role of the Dna2 translocase function in DNA break resection.

Genes Dev. 2017 03 01;31(5):503-510

Authors: Miller AS, Daley JM, Pham NT, Niu H, Xue X, Ira G, Sung P

Abstract
DNA double-strand break repair by homologous recombination entails nucleolytic resection of the 5′ strand at break ends. Dna2, a flap endonuclease with 5′-3′ helicase activity, is involved in the resection process. The Dna2 helicase activity has been implicated in Okazaki fragment processing during DNA replication but is thought to be dispensable for DNA end resection. Unexpectedly, we found a requirement for the helicase function of Dna2 in end resection in budding yeast cells lacking exonuclease 1. Biochemical analysis reveals that ATP hydrolysis-fueled translocation of Dna2 on ssDNA facilitates 5′ flap cleavage near a single-strand-double strand junction while attenuating 3′ flap incision. Accordingly, the ATP hydrolysis-defective dna2-K1080E mutant is less able to generate long products in a reconstituted resection system. Our study thus reveals a previously unrecognized role of the Dna2 translocase activity in DNA break end resection and in the imposition of the 5′ strand specificity of end resection.

PMID: 28336516 [PubMed – indexed for MEDLINE]


Icon for Public Library of Science Icon for PubMed Central Related Articles

A germline polymorphism of thymine DNA glycosylase induces genomic instability and cellular transformation.

PLoS Genet. 2014 Nov;10(11):e1004753

Authors: Sjolund A, Nemec AA, Paquet N, Prakash A, Sung P, Doublié S, Sweasy JB

Abstract
Thymine DNA glycosylase (TDG) functions in base excision repair, a DNA repair pathway that acts in a lesion-specific manner to correct individual damaged or altered bases. TDG preferentially catalyzes the removal of thymine and uracil paired with guanine, and is also active on 5-fluorouracil (5-FU) paired with adenine or guanine. The rs4135113 single nucleotide polymorphism (SNP) of TDG is found in 10% of the global population. This coding SNP results in the alteration of Gly199 to Ser. Gly199 is part of a loop responsible for stabilizing the flipped abasic nucleotide in the active site pocket. Biochemical analyses indicate that G199S exhibits tighter binding to both its substrate and abasic product. The persistent accumulation of abasic sites in cells expressing G199S leads to the induction of double-strand breaks (DSBs). Cells expressing the G199S variant also activate a DNA damage response. When expressed in cells, G199S induces genomic instability and cellular transformation. Together, these results suggest that individuals harboring the G199S variant may have increased risk for developing cancer.

PMID: 25375110 [PubMed – indexed for MEDLINE]


Icon for HighWire Related Articles

A DNA nick at Ku-blocked double-strand break ends serves as an entry site for exonuclease 1 (Exo1) or Sgs1-Dna2 in long-range DNA end resection.

J Biol Chem. 2018 11 02;293(44):17061-17069

Authors: Wang W, Daley JM, Kwon Y, Xue X, Krasner DS, Miller AS, Nguyen KA, Williamson EA, Shim EY, Lee SE, Hromas R, Sung P

Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic resection of the DNA break ends. The current model, being based primarily on genetic analyses in Saccharomyces cerevisiae and companion biochemical reconstitution studies, posits that end resection proceeds in two distinct stages. Specifically, the initiation of resection is mediated by the nuclease activity of the Mre11-Rad50-Xrs2 (MRX) complex in conjunction with its cofactor Sae2, and long-range resection is carried out by exonuclease 1 (Exo1) or the Sgs1-Top3-Rmi1-Dna2 ensemble. Using fully reconstituted systems, we show here that DNA with ends occluded by the DNA end-joining factor Ku70-Ku80 becomes a suitable substrate for long-range 5′-3′ resection when a nick is introduced at a locale proximal to one of the Ku-bound DNA ends. We also show that Sgs1 can unwind duplex DNA harboring a nick, in a manner dependent on a species-specific interaction with the ssDNA-binding factor replication protein A (RPA). These biochemical systems and results will be valuable for guiding future endeavors directed at delineating the mechanistic intricacy of DNA end resection in eukaryotes.

PMID: 30224356 [PubMed – indexed for MEDLINE]


Filter results

Secured By miniOrange